
OS PROJECT INTERFACE: C++

Note: For some older compilers, all int's shown on these pages are to be made long.

STRUCTURE OF yourfile.cpp :

#include's // These declarations (e.g. jobtable) exist only in your file, but

#define's // since they lie outside of function definitions

typedef's // they are global to the whole file and retain their

static variables // values over the course of program execution

 // (i. e., between function invocations).

void siodisk(int jobnum);

void siodrum(int jobnum, int jobsize, int coreaddress, int direction);

 // Channel commands siodisk and siodrum are made available to you by the simulator.

 // siodisk has one argument: job number, of type int and passed by value.

 // siodrum has four arguments, all of type int and passed by value:

 // first argument is job number;

 // second argument is job size;

 // third argument is starting core address;

 // fourth argument is interpreted as follows:

 // 1 => move from core (memory) to drum

 // 0 => move from drum to core (memory)

void ontrace(); // called without arguments

void offtrace(); // called without arguments

 // The 2 trace procedures allow you to turn the tracing mechanism on and off.

 // The default value is off. WARNING: ontrace produces a blow-by-blow description

 // of each event and results in an extremely large amount of output.

 // It should be used only as an aid in debugging.

 // Even with the trace off, performance statistics are

 // generated at regular intervals and a diagnostic message appears in case of a crash.

 // In either case, your OS need not print anything.

void startup()

{

 // Allows initialization of static system variables declared above.

 // Called once at start of the simulation.

}

// INTERRUPT HANDLERS

 // The following 5 functions are the interrupt handlers. The arguments

 // passed from the environment are detailed with each function below.

 // See RUNNING A JOB, below, for additional information

void Crint (int &a, int p[])

{

 // Indicates the arrival of a new job on the drum.

 // At call: p [1] = job number

 // p [2] = priority

 // p [3] = job size, K bytes

 // p [4] = max CPU time allowed for job

 // p [5] = current time

}

void Dskint (int &a, int p[])

{

 // Disk interrupt.

 // At call: p [5] = current time

}

void Drmint (int &a, int p[])

{

 // Drum interrupt.

 // At call: p [5] = current time

}

void Tro (int &a, int p[])

{

 // Timer-Run-Out.

 // At call: p [5] = current time

}

void Svc (int &a, int p[])

{

 // Supervisor call from user program.

 // At call: p [5] = current time

 // a = 5 => job has terminated

 // a = 6 => job requests disk i/o

 // a = 7 => job wants to be blocked until all its pending

 // I/O requests are completed

}

Additional functions local to OS (scheduler, swapper, etc.)

RUNNING A JOB:

// Before leaving each interrupt handler (with the return statement)

// you must call the dispatcher to send info about which job to run.

// The dispatcher should set the a and p arguments as follows:

 // a = 1 CPU is idle, p is ignored

 // a = 2 CPU is in user mode,

 // p [0], p [1], and p [5] are ignored

 // p [2] = base address of job to be run

 // p [3] = size (in K) of job to be run

 // p [4] = time quantum

--

NOTES:
 - time is in milliseconds.

 - core addresses are in K (0 - 99).

 - priority ranges from 1 (highest) to 10 (lowest).

 - assume interrupts are inhibited while OS is executing.

TO RUN SOS WITH YOUR OS:

 compile yourfile.cpp separately and link with sos.obj (PC) or sos.o (Unix).

 main() is defined in sos.

 Look on the project Web site for individual "how-to" files for your compiler.

